skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Powell, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For obtaining optimal first-order convergence guarantees for stochastic optimization, it is necessary to use a recurrent data sampling algorithm that samples every data point with sufficient frequency. Most commonly used data sampling algorithms (e.g., i.i.d., MCMC, random reshuffling) are indeed recurrent under mild assumptions. In this work, we show that for a particular class of stochastic optimization algorithms, we do not need any further property (e.g., independence, exponential mixing, and reshuffling) beyond recurrence in data sampling to guarantee optimal rate of first-order convergence. Namely, using regularized versions of Minimization by Incremental Surrogate Optimization (MISO), we show that for non-convex and possibly non-smooth objective functions with constraints, the expected optimality gap converges at an optimal rate $$O(n^{-1/2})$$ under general recurrent sampling schemes. Furthermore, the implied constant depends explicitly on the ’speed of recurrence’, measured by the expected amount of time to visit a data point, either averaged (’target time’) or supremized (’hitting time’) over the starting locations. We discuss applications of our general framework to decentralized optimization and distributed non-negative matrix factorization. 
    more » « less
  2. For obtaining optimal first-order convergence guarantees for stochastic optimization, it is necessary to use a recurrent data sampling algorithm that samples every data point with sufficient frequency. Most commonly used data sampling algorithms (e.g., i.i.d., MCMC, random reshuffling) are indeed recurrent under mild assumptions. In this work, we show that for a particular class of stochastic optimization algorithms, we do not need any further property (e.g., independence, exponential mixing, and reshuffling) beyond recurrence in data sampling to guarantee optimal rate of first-order convergence. Namely, using regularized versions of Minimization by Incremental Surrogate Optimization (MISO), we show that for non-convex and possibly non-smooth objective functions with constraints, the expected optimality gap converges at an optimal rate $$O(n^{-2})$$ under general recurrent sampling schemes. Furthermore, the implied constant depends explicitly on the ’speed of recurrence’, measured by the expected amount of time to visit a data point, either averaged (’target time’) or supremized (’hitting time’) over the target locations. We discuss applications of our general framework to decentralized optimization and distributed non-negative matrix factorization. 
    more » « less